P6KE6.8A Series
APPLICATION NOTES
RESPONSE TIME
In most applications, the transient suppressor device is
placed in parallel with the equipment or component to be
protected. In this situation, there is a time delay associated with
the capacitance of the device and an overshoot condition
associated with the inductance of the device and the inductance
of the connection method. The capacitance effect is of minor
importance in the parallel protection scheme because it only
produces a time delay in the transition from the operating
voltage to the clamp voltage as shown in Figure 7.
The inductive effects in the device are due to actual turn-on
time (time required for the device to go from zero current to full
current) and lead inductance. This inductive effect produces an
overshoot in the voltage across the equipment or component
being protected as shown in Figure 8. Minimizing this
overshoot is very important in the application, since the main
purpose for adding a transient suppressor is to clamp voltage
spikes. The P6KE6.8A series has very good response time,
typically < 1 ns and negligible inductance. However, external
inductive effects could produce unacceptable overshoot.
Proper circuit layout, minimum lead lengths and placing the
suppressor device as close as possible to the equipment or
components to be protected will minimize this overshoot.
Some input impedance represented by Z in is essential to
prevent overstress of the protection device. This impedance
should be as high as possible, without restricting the circuit
operation.
DUTY CYCLE DERATING
The data of Figure 1 applies for non-repetitive conditions
and at a lead temperature of 25 ° C. If the duty cycle increases,
the peak power must be reduced as indicated by the curves of
Figure 6. Average power must be derated as the lead or ambient
temperature rises above 25 ° C. The average power derating
curve normally given on data sheets may be normalized and
used for this purpose.
At first glance the derating curves of Figure 6 appear to be
in error as the 10 ms pulse has a higher derating factor than the
10 m s pulse. However, when the derating factor for a given
pulse of Figure 6 is multiplied by the peak power value of
Figure 1 for the same pulse, the results follow the expected
trend.
TYPICAL PROTECTION CIRCUIT
Z in
V in
LOAD
V L
V
V in (TRANSIENT)
V
OVERSHOOT DUE TO
INDUCTIVE EFFECTS
V in (TRANSIENT)
V L
V L
V in
t d
t D = TIME DELAY DUE TO CAPACITIVE EFFECT
t
Figure 7.
UL RECOGNITION*
Figure 8.
t
The entire series including the bidirectional CA suffix has
Underwriters Laboratory Recognition for the classification of
protectors (QVGQ2) under the UL standard for safety 497B
and File #E210057. Many competitors only have one or two
devices recognized or have recognition in a non-protective
category. Some competitors have no recognition at all. With
the UL497B recognition, our parts successfully passed several
tests including Strike Voltage Breakdown test, Endurance
Conditioning, Temperature test, Dielectric Voltage-Withstand
test, Discharge test and several more.
Whereas, some competitors have only passed a flammability
test for the package material, we have been recognized for
much more to be included in their protector category.
*Applies to P6KE6.8A ? P6KE200A.
http://onsemi.com
4
相关PDF资料
P6KE15CA TVS BIDIRECT 600W 15V DO-15
P6KE20CHE3/54 TVS 600W 20V 10% BIDIR AXIAL
P6KE350CA TVS BIDIR 600W 350V DO-15
P6KE400CA TVS BIDIR 600W 400V DO-15
P6KE520A-G TVS 600W 520V UNIDIRECT DO-15
P6KE600CA-HF TVS 600W 600V BIDIRECT DO-15
P6SMB43CAT3G TVS ZENER BIDIR 600W 43V SMB
PA301 SWITCH PUSH SPST 20A 125V
相关代理商/技术参数
P6KE150A-T 功能描述:TVS 二极管 - 瞬态电压抑制器 600W 128.00V RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C
P6KE150A-TP 制造商:Micro Commercial Components (MCC) 功能描述:Diode TVS Single Uni-Dir 128V 600W 2-Pin DO-15 T/R
P6KE150ATR 制造商:World Products 功能描述:
P6KE150C 功能描述:TVS 二极管 - 瞬态电压抑制器 121Vso 95VAC 2.8A RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C
P6KE150C/1 功能描述:TVS 二极管 - 瞬态电压抑制器 600W 150V 10% Bidir RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C
P6KE150C/23 功能描述:TVS 二极管 - 瞬态电压抑制器 600W 150V Bidirect RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C
P6KE150C/54 功能描述:TVS 二极管 - 瞬态电压抑制器 600W 150V Bidirect RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C
P6KE150CA 功能描述:TVS 二极管 - 瞬态电压抑制器 600W 150V Bidirect RoHS:否 制造商:Vishay Semiconductors 极性:Bidirectional 工作电压: 击穿电压:58.9 V 钳位电压:77.4 V 峰值浪涌电流:38.8 A 系列: 封装 / 箱体:DO-214AB 最小工作温度:- 55 C 最大工作温度:+ 150 C